image image image image
 

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058)

data Data   image ASCII Text Documentation   PDF file PDF file

Contributors

R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors)

DOI

DOI: 10.3334/CDIAC/ffe.ndp058

This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas; for example, from 1980 and 1990, a 63% increase in CO2 emissions (based on 1980 emissions) occurred in mainland China and a 95% increase in India. However, actual decreases from 1980 to 1990 occurred in Western Europe: 30% in Sweden, 27% in France, and 23% in Belgium. Latitudinal summations of emissions show a slow southerly shift (in the Northern Hemisphere) in the bulk of emissions over time. The large increases, from 1950 to 1990, in China's and India's contributions to anthropogenic CO2 emissions compared to those by the United States are, for example, very apparent at the latitudinal band around 25.5° North.